ORIGINAL ARTICLE

End-Tidal to Arterial Carbon Dioxide Partial Pressure Difference During Craniotomy in Anaesthetised Patients

J Husaini, Y C Choy

Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia

SUMMARY

This study to evaluate the relationship between end-tidal carbon dioxide pressure (ETCO₂) and arterial partial pressure of carbon dioxide (PaCO₂) included 35 patients between the ages of 18 and 65 years, ASA grade 1 and 2, who had elective craniotomies. Measurements of PaCO₂ and ETCO₂ were taken simultaneously: 1) 10 minutes after induction of general anaesthesia, 2) after cranium opening prior to dural incision, 3) start of dural closure. There was significant correlation between ETCO₂ and PaCO₂ (correlation coefficient: 0.571, 0.559 and 0.629 respectively). The mean (SD) difference for PaCO₂ and ETCO₂ were: 3.84 (2.13), 4.85 (5.78) and 3.91 (2.33) mmHg respectively. Although there was agreement, the bias is of significant clinical importance. In conclusion, we find that ETCO₂ consistently underestimated the value of PaCO₂ during craniotomy.

KEY WORDS:

End-tidal carbon dioxide pressure, Arterial partial pressure of carbon dioxide, Craniotomy

INTRODUCTION

Capnography, which is based on the measurement of end tidal carbon dioxide (ETCO₂), is a well-established method for intraoperative monitoring of respiratory function during routine anaesthesia¹. ETCO₂ refers to the partial pressure of carbon dioxide at the end of expiration and reflects arterial carbon dioxide tension (PaCO₂)¹⁻³. The usual reported difference between PaCO₂ and ETCO₂ is approximately 2.0 to 5.0 mmHg in a healthy adult with the latter being lower¹.

The ability to control PaCO₂ is vital during neurosurgical procedures as this affects intracranial pressure dynamics. Increased PaCO₂ could cause an increase in cerebral blood volume with resulting intracranial hypertension and decreased cerebral perfusion pressure⁴. Therapeutic hyperventilation is often used to lower intracranial pressure during craniotomies before the dura is opened. Regional cerebral tissue hypoxia could result if hyperventilation decreases PaCO₂ to 20 mmHg or less⁴. If the gradient between arterial and end-tidal carbon dioxide partial pressure is within clinical limits, then ETCO₂ could be used reliably to follow respiratory acid-base status and assist in the titration of hyperventilation therapy, as well as decrease the expense and time involved in frequent arterial blood sampling.

During craniotomies, there is a doubt if capnography alone is adequate to monitor pulmonary ventilation to achieve targeted PaCO₂. The difficulty lies in not knowing how much the expected gradient between ETCO2 and PaCO2 is. Russell reported that in mechanically ventilated neuro-intensive care patients, there is significant variability in the relationship between PaCO₂ and ETCO₂⁶. The P(a-ET)CO₂ was reported on average to be 6.9 ± 4.4 mmHg. Russell studied neurosurgical patients undergoing craniotomies and found that ETCO2 did not provide a statistically stable estimation of PaCO2 in mechanically ventilated patients6. However, another study which determined P(a-ET)CO2 in head injury patients, found that ETCO2 was an accurate reflection of PaCO2 7. Most studies suggested that ETCO2 will not show consistent results if used to estimate PaCO₂ for neurosurgical patients. The objective of this study was to determine the relationship between the arterial partial pressure of carbon dioxide (PaCO₂) and end-tidal carbon dioxide partial pressure (ETCO₂) measured in neurosurgical patients during craniotomy, and to determine if ETCO2 could be used to estimate PaCO₂ during craniotomy.

MATERIALS AND METHODS

This was a prospective study carried out in Hospital Universiti Kebangsaan Malaysia over one year after obtaining approval from the Dissertation / Ethics Committee of the Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Universiti Kebangsaan Malaysia.

Thirty five patients, after giving informed consent were enrolled in this study. Inclusion criteria were: ASA grade 1 and 2, ages from 18 to 65 years, and scheduled for elective craniotomies in the supine position. Exclusion criteria were: patients with suspected difficult airway and a history of heavy smoking. Standard monitoring included: electrocardiography, pulse oximetry, central venous pressure and invasive arterial blood pressure.

Anaesthesia was induced with intravenous fentanyl 2 µg.kg⁻¹ and propofol 2 mg.kg⁻¹. Rocuronium 0.6 mg.kg⁻¹ was used to facilitate tracheal intubation. After adequate jaw relaxation was achieved, an appropriate sized cuffed tracheal tube was inserted and intermittent positive pressure ventilation was instituted using a volume-controlled mode with a tidal volume of 7-10 ml.kg⁻¹and a respiratory rate of 10-12 breaths per minute. General anaesthesia was maintained with oxygen (40-50%), air and sevoflurane (MAC 0.8-1.0).

This article was accepted: 11 November 2008

Corresponding Author: Choy Yin Chin, Department of Anaesthesiology and Intensive Care, Hospital Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur Email: choy@mail.hukm.ukm.my

Table I: Patient Demographic data.	. Values are mean (SD)
------------------------------------	------------------------

	n=35	
Age: years	45.9 (11.5)	
Weight: kg	63.4 (9.1)	
Height: m	160.9 (6.5)	
Sex: M : F	20 : 15	
Race: Malay : Chinese : Indian	23 : 10 : 2	
ASA grade: 1 : 2	17 : 18	

Table II: Cardio-respiratory variables during craniotomy and surgical details. Data are mean (SD)

	10 min after induction	After cranium opening prior to dural incision	Start of dural closure
PaO2; mmHg	182 (38)	147 (41)	146 (42)
Mean arterial pressure; mmHg	87 (8)	83 (12)	81 (7)
Heart rate; beat min. ¹	77 (17)	84 (12)	85 (11)
Respiratory rate; breath min. ⁻¹	10 (1)	11 (1)	10 (1)
Peak airway pressure; mmHg	18 (4)	26 (4)	18 (5)
Expired tidal volume; ml	464 (86)	465 (86)	462 (86)
Temperature; ° C	35.9(1.3)	35.5 (0.6)	35.6 (0.6)
Duration of operation; hour		4.14 (1.7)	
Estimated blood loss; ml		742 (405.9)	

Table III: Arterial and end-tidal carbon dioxide values, average and difference values are mean (SD).

	Ten minutes after induction n=35	After craniotomy before dural incision n=35	Start of dural closure n=35
PaCO2; mmHg	34.6 (3.2)	36.3 (3.0)	36.9 (2.5)
ETCO2; mmHg	31.0 (3.4)	32.7 (3.2)	33.0 (3.4)
Average of two methods; mmHg	32.9 (2.9)	34.6 (3.0)	34.0 (6.0)
(PaCO2 - ETCO2); mmHg	3.8 (2.1)	4.9 (5.8)	3.9 (2.3)

Table IV: Correlation between PaCO₂ and ETCO₂ during craniotomy

PaCO2 / ETCO2	Correlation coefficient	P value	
10 min after induction	0.571	< 0.01	
After craniotomy before dural incision	0.559	< 0.01	
Start of dural closure	0.629	< 0.01	

Following induction of anaesthesia, a 20 G cannula was inserted for invasive arterial pressure monitoring. Three samples of arterial blood gases were taken at 10 minutes after induction of general anaesthesia and tracheal intubation (baseline), after craniotomy prior to dural incision and at the beginning of dural closure. Additional analyses of arterial blood gases were performed at the discretion of the attending anaesthesiologist when clinically indicated.

The PaCO₂ was measured from arterial blood sample using the blood gases analyser (ABL Radiometer Copenhagen) and corrected to a temperature of 37^o C. The ETCO₂ was recorded simultaneously at the time of each arterial blood gas sampling using a side-stream capnometer (capnometry module, Kion, M-CAIOV.01). The P(a-ET)CO₂ was calculated for each arterial blood gas sample.

Heart rate, blood pressure, respiratory rate, tidal volume, peak inspiratory pressure and PaO₂ were recorded at each sampling time.

Data were initially analyzed using Pearson's Correlation to see the relationship between PaCO₂ and ETCO₂ at different stages of the operation. A P value of < 0.05 was considered significant. The agreement between the measures of CO₂ was assessed using Bland-Altman method, where mean difference and average between PaCO₂ and ETCO₂ were calculated. The 95% limits of agreement were also displayed.

RESULTS

A total of thirty five patients were studied. Demographic data of patients are shown in Table I. Cardio-respiratory physiological variables are summarized in Table II. Table III shows the end-tidal to arterial carbon dioxide values. Table IV shows significant correlation between PaCO₂ and ETCO₂ at all three sampling times.

Figures 1-3, show Bland-Altman plots to demonstrate agreement between the two methods of measuring carbon dioxide partial pressure. The calculated mean difference, standard deviation and 95% limits of agreement are presented. The greatest mean difference occurred just prior to dural incision and was 4.85 mmHg. The 95% agreement was from - 1.8 to 12 mmHg. The lowest mean difference was at 10 minutes after induction and was 3.84 mmHg. The 95% agreement was from - 0.34 to 8.02 mmHg.

Fig. 1: Bland-Altman plot for differences and average of PaCO2 and ETCO2 a 10 minutes after induction.

Fig. 3: Bland-Altman plot for the differences and average of PaCO₂ and ETCO₂ during start of dural closure.

DISCUSSION

Although arterial blood gas measurement of PaCO₂ is the gold standard for monitoring changes in CO₂, it is invasive, expensive and provides only intermittent measures of PaCO₂. ETCO₂ provides continuous respiratory monitoring. Many anaesthetists rely on ETCO₂ to predict the PaCO₂ during craniotomy in order to minimize arterial blood sampling. However, the ability of ETCO₂ changes to predict the direction of changes in PaCO₂ is questionable, since previous studies showed inconsistency in their findings⁶⁸.

In this study, values of PaCO₂ and ETCO₂ were shown to be significantly correlated throughout the craniotomy operation. PaCO₂ always exceeded ETCO₂ and there were no difference that went in opposite directions. These results are in contrast with those observed by Russell during craniotomy⁶. Interestingly, a study done by Kerr in severe head injury patients showed that ETCO2 correlated well with PaCO₂ only in patients without respiratory complications or without spontaneous breathing⁸. Russell had studied neurointensive care patients and found consistent relationship between PaCO2 and ETCO2⁶. However, Russell was doubtful, and among many discrepancies he found the P(a-ET)CO2 differences became bigger at higher average of PaCO2 and ETCO₂. In this study, the correlation of PaCO₂ with ETCO₂ was significant at different times during the operation. In contrast to these results, Grainier reported that P(a-ET)CO2 was unstable over time, when the procedure took more than three hours9.

Further assessment using Bland Altman method showed agreement between those two methods of measuring carbon dioxide partial pressure. Although there was agreement, the authors feel that, the bias is of significant clinical importance. We did not combine the repeated measures of PaCO₂ and ETCO₂ for analysis as such a technique would result in invalid conclusions⁵. During craniotomies, Russell found P(a-ET)CO₂ to be 7.2 \pm 3.3 mmHg⁴. He found P(a-ET)CO₂ to be 5.47 \pm 5.51 mmHg in post cardiac surgery, 11 and 6.9 \pm 4.4 mmHg in mechanically ventilated neurointensive care patients⁶. It may be difficult to relate these results which are higher compared with results for neurosurgical patients in this study. Instability of intra operative cardiac and pulmonary status might explain these inconsistent results.

Other researchers in various clinical situations also demonstrated inconsistent results. Shanker recorded P(a-ET)CO₂ to be 1.9 to 2.4 mmHg during laparoscopic surgery in

pregnancy at various stages during the operation¹². During caesarean section under general anaesthesia, Shanker¹³ found the P(a-ET)CO₂ was 0.03 to 0.78 mmHg and Rudolph *et al*¹⁴ found P(a-ET)CO₂ to be 5.5 to 6.9 mmHg at different phases during early recovery from general anaesthesia.

Significant differences between PaCO₂ and ETCO₂ were seen at all stages in this study, which may not be clinically acceptable. These findings are consistent with the results from previous studies⁶⁻⁸. The difference can be explained with the theories of dead space, shunt and ventilation-perfusion mismatch (V/Q mismatch). Even in the healthy lung, the PaCO₂ and ETCO₂ difference is not zero. V/Q mismatching can occur in patients who are given general anaesthesia or have lung diseases. Fresh gas entrainment during side-stream gas sampling tends to dilute expired carbon dioxide tension and contributes further to errors during measurement of ETCO₂.

Other reasons for the variation in the difference could be attributed to equipment error, such as calibration of the equipment and the temperature at which the blood gases were analyzed, as these factors may affect the accuracy of the readings. Chan found that main-stream capnometry provided a more accurate estimation of PaCO₂ compared with side-stream capnometry¹⁵. Sitzwoh *et al* observed increased mean difference of 2.5 fold from 4.1 to 10.4 mmHg during mild to moderate hypothermia when CO₂ determinations were not temperature corrected ¹⁶. Grenier et al found lateral positioning increases the mean difference compared with supine, prone and sitting positions⁹.

As a result of different clinical scenarios, many variations and differences between PaCO₂ and ETCO₂ are seen during anaesthesia. Although many studies showed that we can rely on capnography to estimate PaCO₂ values, we recommend ABG measurement in conjunction with capnography. Furthermore, electrolytes, glucose and lactate levels can be measured in the blood samples. This contributes to safe clinical management of patients.

In conclusion, significant correlation was found between PaCO₂ and ETCO₂ at various stages of craniotomy and both

methods were in agreement with each other throughout the operation. Although there was agreement, the authors feel that, the bias is of significant clinical importance. ETCO₂ consistently underestimates the value of PaCO₂ during craniotomy.

REFERENCES

- 1. Bhavani-Shanker K, Mosely H, Kumar AY, *et al.* Capnometry and anaesthesia. Cana J Anaesth 1992; 39: 617-32.
- Marino PL. Oximetry and Capnography. The ICU Book, 3rd edn. Lippincott Williams & Wilkins, 2007; 20: 395-8.
- 3. Frakes MA. Measuring end-tidal carbon dioxide: Clinical applications and usefulness. Crit Care Nurse 2001; 21: 23-34.
- Russell GB, Graybeal JM. End tidal carbon dioxide as indicator of arterial carbon dioxide in neuro-intensive care patients. J Neurosurg Anesth 1992; 4: 245-9.
- 5. Myles PS. Editorial: Using the Bland-Altman method to measure agreement with repeated measures. Br J Anesth. 2007; 99: 309-11.
- Russell GB, Graybeal JM. The arterial to end-tidal carbon dioxide difference in neurosurgical patient during craniotomy. Anesth Anal 1995; 81: 806-10.
- Mackersie RC, Karagianes TG. Use of the end-tidal carbon dioxide tension for monitoring induced hypocapnea in head-injured patients. Crit Care Medi; 1990; 18: 764-5
- Kerr, Mary E, Zempsky, Janna RN, *et al.* Relationship between arterial carbon dioxide and end tidal carbon dioxide in adults with severe head trauma. Crit Care Med 1996; 24: 785-90.
- 9. Grenier B, Verchere E, Mesli Abdelghani, *et al.* Capnography monitoring during neurosurgery: Reliability in relation to various intra-operative positions. Anesth Analg 1999; 88: 43-8.
- 10. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-10.
- 11. Russell GB, Graybeal JM, Stroudt JC. Stability of arterial to end tidal carbon dioxide gradients during post operative cardio-respiratory support. Can J Anesth 1990; 37: 560-6.
- 12. Shanker K B, Steinbrook RA, Brooks DC, *et al.* Arterial to end tidal carbon dioxide pressure difference during laparoscopic surgery in pregnancy. Anesthesiology 2000; 93: 370-3.
- Shanker K B, Mosely H, Kumar Y, *et al.* Arterial to end tidal carbon dioxide tension difference during Caesarean section anaesthesia. Anaesthesia 1986; 41: 698-702.
- Rudolph F, Hein HAT, Marcel RJ, *et al.* End tidal carbon dioxide does not correlate with arterial carbon dioxide in early recovery from general anaesthesia. Anesth Anal 1998; 86: 227S.
 Chan KL, Chan MTV, Gin T. Mainstream versus side-stream capnometry of
- Chan KL, Chan MTV, Gin T. Mainstream versus side-stream capnometry of arterial carbon dioxide tension during supine position. Anaesthesia 2003; 58: 149-58.
- 16. Switzwoh C, Kettner SC, Reinprechtt A, *et al.* The arterial to end tidal carbon dioxide gradient increase with uncorrected but not with temperature corrected PaCO2 determination during mild to moderate hypothermia. Anesth Anal 1998; 86: 1131-6.