Acute Coronary Syndromes I: Recent Advances in Pathogenesis

Khalid Yusoff, FACC, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Tenteram, Cheras, 50600 Kuala Lumpur

Summary

New knowledge on the pathogenesis of the acute coronary syndromes provides the clinician with a better understanding of these important, often life-threatening, events and opens up new ways of managing them. The identification of the vulnerable plaque whilst important and possible pathologically still requires elaborate and often invasive methods. The central role of inflammation and the platelets in these syndromes has already been translated into practical therapeutics. Identifying and predicting which plaque would rupture and thereby facilitating the formation of an acute obstructive thrombus continue as major challenges to the clinician, but, in the meantime, regressing and stabilising these plaques are achievable goals.

Key Words: Acute coronary syndrome, Vulnerable plaque, Platelets, Thrombosis, Pathogenesis

Acute coronary syndromes are clinical entities whose basic pathogenetic mechanism is the onset of an abrupt, marked reduction in coronary blood flow leading to myocardial ischaemia or even necrosis. These entities consist of unstable angina, non-Q acute myocardial infarction (AMI), acute myocardial infarction and a newly recognised entity, minor (or perhaps more accurately termed, acute) myocardial injury. Acute thrombosis after coronary angioplasty or stenting may also be considered an acute coronary syndrome, although this is not 'natural' and very much iatrogenic. The consequences of these syndromes are considerable and the substantial impairment to the prognosis of patients suffering from these entities is well known. For instance, AMI is associated with a 27 - 44% 1-year mortality¹ while unstable angina is associated with a 12 - 17% risk of AMI2-3. Minor myocardial injury, rather surprisingly, has a prognosis almost similar to that of AMI4-5. Be it the case, the tremendous improvements achieved by recent treatment modalities for these entities are truly impressive. With the use of thrombolytic therapy, for example, mortality from AMI has been reduced by an overall rate of 27%⁶. Further, the long-term prognosis of AMI has also been improved by other measures such as the use of beta-blockers, aspirin, angiotensin converting enzyme inhibitors, and HMG-CoA enzyme inhibitors.

Pathogenesis of Acute Coronary Syndromes

The pathologic basis for coronary artery disease is most commonly due to atherosclerosis. A number of pathologic processes are involved, including:

- i. inflammation involving permeability and activation of the endothelium⁷⁻⁸, and recruitment of the monocytes⁹⁻¹⁰
- ii. growth through proliferation and migration of the smooth muscle cells¹¹⁻¹² as well as matrix synthesis¹³
- iii. degeneration which includes principally accumulation of lipids¹⁴⁻¹⁵
- iv. necrosis through the cytotoxic effects of lipid oxidation¹⁶⁻¹⁹
- v. active calcification²⁰
- vi. thrombosis with platelet activation and fibrin formation²¹⁻²³

With the growth of the atherosclerotic plaque, the lumen of the coronary artery gets progressively narrower with time. When the plaque causes a critical narrowing in the lumen (usually at least a 75% diameter narrowing, giving a 90% reduction in coronary flow), myocardial ischaemia occurs giving rise to perhaps, angina pectoris. It is tempting to follow the concept to its logical conclusion, ie. with complete narrowing of the coronary lumen by this atherosclerotic plaque, total cessation of blood flow occurs giving rise to AMI. Angioscopic studies on patients with AMI over the last decade showed that this was not the case. These studies showed that total occlussion of the coronary artery was due to the formation of a thrombus overlying the atherosclerotic plaque²⁴⁻²⁹. Falk³⁰⁻³¹ and Davies³² took these observations further by demonstrating that there were tears, fissuring, rupture of the fibrous cap and haemorrhage into the plaque over which the occluding thrombus then formed. With the disruption of the fibrous cap of the plaque, the plaque contents which, composed of cholesterol, smooth muscle cells, fibrous tisssue, etc, are highly thrombogenic induce the formation of the thrombus. On the other hand, it is also observed that in a minority of plaques there is superficial intimal erosion or denudation of the fibrous cap. This tends to be associated with pre-existing severe atherosclerotic stenosis33-35.

These observations lead to a number of questions regarding plaque rupture and some answers are already available albeit preliminary in some. Some of these questions are:

- a. Why do plaques rupture?
- b. Which plaques tend to rupture?
- c. When do plaques rupture?
- d. Can the vulnerable plaque be identified?
- e. Can plaque rupture be avoided?

Why do plaques rupture?

A combination of physical, mechanical, biochemical and biological factors seems to predispose, initiate and perhaps trigger plaque rupture. A number of intrinsic properties and extrinsic forces on the plaques have been identified to underlie this mechanism. Inflammation of the fibrous cap seems to be an

important pathogenetic factor, causing the thinning of the cap thereby predisposing it to instability and propensity to rupture. Foam cell or macrophage infiltration of the disrupted fibrous cap has long been observed^{30, 36-39}. It has also been noted that these cells are activated and involved in a process of inflammation⁴⁰. Shoulder regions of eccentric lesions are sites of macrophage infiltration⁴¹⁻⁴³, active inflammation^{30,38-39} and disruption³⁴. Mechanical testing shows that macrophage infiltration weakens the cap locally, thus reducing its tensile strength⁴⁴. These macrophages weaken the cap by degrading extracellular matrix through phagocytosis and secreting proteolytic enzymes such as plasminogen activators and metalloproteinases⁴⁵. These macrophages also promote thrombin generation and acute thrombus formation over the disrupted plaques⁴⁶⁻⁴⁷. Other inflammatory cells involved in this process include mast cells48 and neutrophils^{8,35,49}.

Biomechanical stresses experienced by the atheromatous plaque also contribute to the process of plaque disruption. These stresses have been identified as tensile stress (as provided by chronic as well as acute elevation of the blood pressure⁴⁴), compressive stress (as present during vasospasm^{38,50}), circumferential bending stress (as is consequent to the propagating pulse wave ⁵¹), longitudinal flexion stress (as provided by the beating heart on the tethered coronary artery⁵²) and haemodynamic stress (as caused by high blood velocity in stenotic lesions⁵³).

Which plaques tend to rupture?

While it seems plausible that the bigger plaques (thus associated with more reduction in coronary blood flow) are the culprit lesions, a number of investigators testify to the contrary. Lesions which rupture tend to be the smaller and perhaps newer and earlier lesions which are identifiable angiographically as those with mild to moderate degree of stenosis^{22,54,56}. These lesions tend to have a thin fibrous cap, a large vulnerable atheromatous pool mainly in the form of cholesterol esters⁵⁷⁻⁵⁸, a high content of monocytes and macrophages and less amounts of collagen-rich matrix. These lesions have been termed the vulnerable plaques. The more stenotic lesions do progress to more severe or even complete occlusion. However this is usually

not accompanied or punctuated by myocardial infarction, probably due to the presence of well-developed collateral supply ⁵⁹⁻⁶⁰.

Thus conceptionally, there are plaques which tend not to rupture but keep on growing causing progressive obstruction to the coronary blood flow which may give rise to angina and perhaps result in chronic myocardial damage such as myocardial hibernation (reversible) or ischaemic cardiomyopathy (irreversible). On the other hand, there are plaques which are vulnerable to rupture and fissure giving rise to acute thrombosis, thus causing acute obstruction to the coronary flow leading to unstable angina or AMI. Which of these entities that the patient ends up with seems to depend on the extent and duration of the acute occlusive thrombus formed. Unstable angina and non-Q AMI seem to be associated with transient and incompletely occluded thrombus while transmural myocardial infarction tends to be associated with a completely occluded stable thrombus²³. Overall vascular tone and collateral flow also act to modify the effect of these processes on the resultant myocardial perfusion⁶¹.

When do plaques rupture?

It has been observed that acute coronary events do not occur evenly through-out the twenty-four hours. There is a propensity for these events to occur in the morning hours⁶²⁻⁶⁵, during cold weather⁶⁶⁻⁶⁷, emotional stress⁶⁸ or vigorous exercise⁶⁹. Although so far no direct reason is put forward to account for this phenomenon, a number of observations may provide corroborative evidence and a pathogenetic basis why this is so. It has been noted, for instance, that the blood pressure and heart rate tend to rise in the morning hours providing an increased stress on the endothelium, the fibrous cap and the atherosclerotic plaque⁷⁰. This then results in increased oxygen demand leading to transient, acute myocardial ischaemia. Further, the blood is more thrombogenic in the early hours with an increase in platelet aggregability71-72, increased blood fibrinolysis74-75 viscosity⁷³, impaired and vasoconstriction⁷⁶⁻⁷⁷. These intriguing observations should provide the clinician with a window of opportunity for intervention both in terms of the choice of therapy and in the delivery of the therapy such as drug dosing. For instance, one has to ensure

that in a hypertensive patient particularly with ischaemic heart disease, the blood pressure control is truly over the twenty-four hours and that there is no period (often pre-dose at the trough of the antihypertensive agent) during which the drug may be suboptimal (occurs especially with drugs with low trough-peak ratio).

Can the vulnerable *plaques* be identified?

The composition and the pathophysiological mechanisms within these lesions give an opportunity for these lesions to be identified before they rupture and cause thrombosis. Coronary angiography, for long a gold standard in identifying and quantifying luminal narrowing in the coronary arteries, has been shown to have considerable limitations in assessing the endothelium and the arterial wall especially in characterising the plaques. New diagnostic modalities such as coronary angioscopy $^{26-29}$ and intravascular ultrasound, IVUS78-79 have made major contributions in elucidating the morphologic characteristics of these lesions. IVUS, for instance, can differentiate the thin cap from a thick cap. The lipid pool within the plaque could be identified and the size estimated by IVUS. A major drawback of these techniques though is their cost and invasive nature. Whether with time, new imaging modalities such as electron-beam computerised tomography or 3-D echocardiography or other noninvasive diagnostic methods may be able to identify these lesions is interesting to speculate.

Can plaque rupture be avoided?

All these understanding on pathogenesis and even efforts to identify these vulnerable plaque will have little clinical utility if its natural history cannot be intervened and changed. If upon intervention, the clinical outcome is improved through a reduction in the incidence of acute coronary syndromes, for instance, one can surmise that the plaque may have been stabilised and that plaque rupture can be avoided and not inevitable after all.

In this respect, primary and secondary preventive measures have consistently shown a marked benefit not only on mortality but also on morbidity. Lipid lowering agents⁸⁰⁻⁸², ACE inhibitors⁸³⁻⁸⁴, beta-blockers⁸⁵⁻

CONTINUING MEDICAL EDUCATION

⁸⁶, calcium channel blockers⁸⁷⁻⁸⁸, and change in life style such as smoking cessation⁸⁹⁻⁹⁰ have all, to varying extent, been shown to effect a beneficial effect on the prognosis of patients with coronary artery disease. This may come about either by prevention of atherosclerotic plaque progression, or promotion of regression, or stabilisation of these plaques or a combination of these effects.

Clinical Implications

These new observations and concepts, whilst important in themselves, provide the clinician with new opportunities for intervention. They provide an explanation why mechanical revascularisation such as coronary artery bypass surgery, coronary angioplasty and stenting, though effective in reducing angina episodes for instance, may not necessarily influence the incidence of myocardial infarction. These mechanical strategies tend to address the large, flow-limiting plaques and not the mild-to-moderate nonflow-limiting but none-the-less plaques which are vulnerable to fissure and rupture.

The role of acute thrombus formation on a fissured, disrupted plaque brings to the fore the pre-eminent importance of thrombolytic therapy in the management of AMI and the use of anti-platelets and perhaps other anti-thrombotic agents in AMI and unstable angina. However, which thrombolytic agent (streptokinase or tisssue plasminogen activator, tPA, for instance) and how to give these agents (front-loaded or conventional infusion of tPA, for example) as well as which adjuvant therapy to adopt are important yet unsettled issues. The use of mechanical revascularisation strategies for these acute coronary syndromes by angioplasty with or without stenting, thus directly dealing with the underlying atherosclerotic plaque, is hotly debated in the literature. These issues will be discussed in detail in Part II of this series.

Conclusion

New knowledge on atherosclerosis brings about a clearer understanding of this common pathologic process and its consequences. Disruption of the plaque and the formation of an acute occluding potentially life-threatening thrombus are two major events which need be considered when addressing the acute coronary syndromes. These concepts enable newer opportunities for intervention and management. The identification of the vulnerable plaque ante-mortem continues to defy the clinician. Such accomplishment may enable yet further inroads into controlling this menace.

References

- Kannel WB. Incidence, prevalence and mortality of coronary artery disease *in* Atherosclerosis and Coronary Artery Disease, Fuster V, Ross R and Topol EJ (eds), Lippincott-Raven Publishers, Philadelphia 1996;13-21.
- Theroux P, Ouimet H, McCans J, latour JG, Joly P, Levy G, Pelletier E, Juneau M, Stasiak J, deGuise P, et al. Aspirin, heparin, both to treat acute unstable angina. N Engl J Med 1988;319 : 1105-11.
- RISC Group. Risk of myocardial infarction and death during treatment with low dose aspirin and intravenous heparin in men with unstable coronary artery disease. Lancet 1990;36 : 827-30.
- Hamm CW, Ravkilde J, Gerhardt W, et al. The prognostic value of serum troponin T in unstable angina. New Engl. J. Med. 1992;327 : 146-50.

- Ravkilde J, Nissen H, Horder M, et al. Independent prognostic value of serum creatine kinase isoenzyme MB mass, cardiac troponin T and myosin light chain levels in suspected acute myocardial infarction. J Am Coll Cardiol 1995;25 : 574-8.
- Granger CB, Califf RM, Topol EJ. Thrombolytic therapy for acute myocardial infarction, a review. Drugs 1992;3 : 293-325
- 7. Alexander RW. Inflammation and coronary artery disease. N Engl. J Med 1994;331 : 468-9.
- Van der Wal AC, Das PK, Tigges AJ, Becker AE. Adhesion molecules on the endothelium and mononuclear cells in human atherosclerotic lesions. Am J Pathol 1992;141 : 1427-33.
- Faruqi RM, DiColerto PE. Mechanisms of monocyte recruitment and accumulation. Br Heart J 1993; 69 (Suppl): S19-S29.

ACUTE CORONARY SYNDROMES

- Hansson GK. Immune and inflammatory mechanisms in the development of atherosclerosis. Br Heart J 1993; 69 (Suppl): S38 - S41.
- 11. Ross R. The pathogenesis of atherosclerosis. A perspective for the 1990s. Nature 1993;362 : 801-9.
- Berenson GS, Radhkrishnamurthy B, Srinivasan R, Vijayagopal P, Dalferes ER. Arterial wall injury and proteoglycan changes in atherosclerosis. Atherosclerosis 1988;112 : 1002-10.
- 13. Wight TN. Cell biology of arterial proteoglycans. Arteriosclerosis 1989;9 : 1-20.
- Steinberg D, Patharssarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenecity. N Engl J Med 1989;320 : 915-24.
- Guyton JR, Klemp KF. Transitional features in human atherosclerosis. Intimal thickening, cholesterol clefts, and cell loss in human aortic fatty streaks. Am J Pathol 1993;143: 1444-57.
- Witztum JL. The oxidation hypothesis in atherosclerosis. Lancet 1994; 344: 793 - 5.
- Schwartz CL, Valente AJ, Sprague EA, Kelly JL, Nerem RM. The pathogenesis of atherosclerosis: An overview. Clin Cardiol 1991; 14 (SuppI) : I-16
- Davies MJ, Woolf N. Atherosclerosis: What is it and why does it occur? Br Heart J 1993; 69 (Suppl): S3-S5.
- 19. Mitchinson MJ. The new face of atherosclerosis. Br J Clin Pract 1994;48 : 149-51.
- Shanahan CM, Cary NRB, Metcalfe JC, Weissberg PL. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 1994;93 : 2393-402.
- Falk E., Fernandez-Ortiz A. Role of thrombosis in atherosclerosis and its complications. Am J Cardiol 1995;75 : 5B-11B.
- 22. Fuster V, Badimon L, Badimon J, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992;326 : 242-50, 310-8.
- Fuster V, Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction. Insights into studies of vascular biology. Circulation 1994;90 : 2126-46.
- 24. Falk E. Morphologic features of unstable atherosclerotic plaques underlying acute coronary syndromes. Am J Cardiol 1989;63 (Suppl E) : 114E-20E.
- Mizuno K, Miyamoto A, Satomura K, Kurita A, Arai T, Sakurada M, Yanagida S, Nakamura H. Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 1991;337 : 809-12.

- Etsuda H, Mizuno K, Arakawa K, Satomura K, Shibuya T, Isojima K. Angioscopy in variant angina: Coronary spasm and intimal injury. Lancet 1993; 342: 1322 - 4.
- Baptista J, de Feyter P, di mardo C, Escaned J, Serruys PW. Stable and unstable anginal syndromes: Target lesion morphology prior to coronary interventions using angiography, intra-coronary ultrasound and angioscopy. Eur Heart J 1994; 15 (Abst Suppl) : 321.
- Mizuno K., Satomura K, Miyamoto A, Arakawa K, Shibuya T, Arai T, Kurita A, Nakamura H, Ambrose JA. Angioscopic evaluation of coronary artery thrombi in acute coronary syndrome. N Engl. J Med. 1992;326 : 289-91.
- Nesto RW, Sassower MA, Manzo KS, Bymes CM, Friedl SE, Muller JA, Abela GS. Angioscopy: Differentiation of culprit lesions in unstable versus stable coronary artery disease. J Am Coll Cardiol 1993;21 (Suppl A) : 195.
- Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983;50 : 127-34.
- 31. Falk E. Morphologic features of unstable atherosclerotic plaques underlying acute coronary syndromes. Am J Cardiol 1989; 63 (Suppl E): 114E-20E.
- Davies MJ, Thomas AC. Plaque fissuring the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985;53 : 363-73.
- Ambrose JA, Winters SL, Stern A, et al. Angiographic morphology and the pathogenesis of unstable angina pectoris. J Am Coll Cardiol 1985;5: 609-16.
- Richardson PD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;ii : 941-4.
- 35. Van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed atherosclerotic plaques is characterised by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89 : 36-44.
- Davies MJ, Richardson PD, Woolf N, katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: Role of lipid, macrophage, and smooth muscle cell content. Br Heart J 1993; 69 : 377-81.
- 37. Friedman M. The coronary thrombus: Its origin and fate. Human Pathol 1971;2 : 81-128.
- Friedman M, Van den Bovenkamp GJ. The pathogenesis of a coronary thrombus. Am J Pathol 1966;48 : 19-44.
- 39. Constantinides P. Plaque fissures in human coronary thrombosis. J Atheroscler Res 1966;6 : 1-7.

CONTINUING MEDICAL EDUCATION

- Buja LM, Willerson JT. Role of inflammation in coronary plaque disruption (Editorial). Circ 1994;89 : 503-5.
- Poston RN, Haskard DO, Coucher JR, Fall NP, Johnson-Tidey RR. Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am J Pathol 1992;140: 665-73.
- Johnson-Tidey RR, McGregor JL, Taylor PR, Poston RN. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Am J Pathol 1994;144 : 952-61.
- Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes: Implications for plaque rupture. Circulation 1994;90 : 775-8.
- Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ. Structure-dependent dynamic mechanical behaviour of fibrous caps from human atherosclerotic plaques. Circulation 1991;83 : 1764-70.
- Gallis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix-metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94 : 2493-503.
- 46. Jude B, Agarao B, McFadden EP. Evidence of time dependent activation of monocytes in systemic circulation in unstable angina but not in acute myocardial infarction or stable angina. Circulaiton 1994;60 : 1662-8.
- Leatham EW, Bath PM, Tooze JA, Tuddenham E, Kaski JC. Monocytes express increased tissue factor in unstable angina and myocardial infarction. Circulation 1993;88 (Suppl I) : I-128.
- Kaartinen M, Pentila A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the prediction site of atheromatous rupture. Circulation 1994;90 : 1669-78.
- Jonasson L, Holm J, Skalli O, Bondjers G, Hannson GK. Regional accumulation of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986;6 : 131-8.
- Bogarty P, Hackett D, Davies G, Maseri A. Vasoreactivity of the culprit lesion in unstable angina. Circulation 1994;90: 5-11.
- 51. Lee RT, Kamm RD. Vascular mechanics for the cardiologist. J Am Coll Cardiol 1994;23 : 1289-95.
- Stein PD, Hamid MS, Shivkumar K, Davis TP, Khaja F, Henry JW. Effects of cyclic flexion of coronary arteries on progression of atherosclerosis. Am J Cardiol 1994;73: 431-7.
- 53. Gertz SD, Uretzky G, Wejnberg RS, Navot N, Gotsman MS. Endothelial cell damage and thrombus formation after partial arterial constriction: Relevance of the role of coronary artery spasm in the pathogenesis of myocardial infarction. Circulation 1981;63 : 476-86.

- Nobuyoshi M, Tanaka M, Nosaka H, Kimura T, Yokoi H, Hamasaki N, Kim K, Shindo T, Kimura K. Progression of coronary atherosclerosis: Is coronary spasm related to progression? J Am Coll Cardiol 1991;18 : 904-10.
- Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12 : 56-62.
- Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J 1988;9 : 1317-23.
- 57. Small DM. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis 1988; 8 : 103-29.
- Lundberg B. Chemical composition and physical state of lipid deposits in atherosclerosis. Atherosclerosis 1985;56: 93-110.
- Berder V, Danchin N, Julliere Y, Sadoul N, Culliere M, Aliot E, Cherrier F. Angiographic study of spontaneous obstruction of coronary artery stenosis: Do the tightest stenoses have the most benign clinical course? Eur Heart J 1991;12 (Abstr Suppl) : 231.
- 60. Giroud D, Li JM, Urban P, Meier B, Rutishauser W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992;69 : 729-32.
- 61. Fuster V, Frye RL, Kennedy MA, Connolly DC, Mankin HT. The role of collateral circulation in the various coronary syndromes. Circulation 1979; 59: 1137-44.
- 62. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989;79 : 733-43.
- Muller JE, Abela GS, Nesto RW, Tofler GH. Triggers, acute risk factors and vulnerable plaques: The lexicon of a new frontier. J Am Coll Cardiol 1994;23: 809-13.
- 64. Hansen O, Johansson BW, Gullberg B. Circadian distribution of onset of acute myocardial infarction in subgroups from analysis of 10 791 patients treated in a single centre. Am J Cardiol 1992; 69: 1003-8.
- Goldberg RJ, Brady P, Muller JE, Chen ZY, de Groot M, Zonneveld P, Dalen JE. Time of onset of symptoms of acute myocardial infarction. Am J Cardiol 1990;66 : 140-4,
- Ornato JP, Siegel L, Craren EJ, Nelson N. Increased incidence of cardiac death attributed to acute myocardial infarction during winter. Coron Artery Dis 1990;1 : 190-203

- Willich SN. Lowel H, Lewis M, Hormann A, Arntz H, Keil U. Weekly variation of acute myocardial infarction. Increased Monday risk in the working population. Circulation 1994; 90: 87-93.
- Mittelman MA, Maclure M, Sherwood JB, Mulry RP, Tofler GH, Jacobs SC, *et al.* Triggering of acute myocardial infarction onset by episodes of anger. Circ 1995;92 : 1720-5.
- Willich SN, Lewis M. Lowel H, Arntz HR, Schubert F, Schroeder R. Physical exertion as a trigger of acute myocardial infarction. N Engl J Med 1993;329 : 1684-90.
- Millar-Craig MW, Bishop CN, Raftery EB. Circadian variation of blood pressure. Lancet 1978;1 : 795-7.
- Tofler GH, Brezinski D, Schafer AI, Sziesler CA, Rutherford JD, Willich SN, Gleason RE, Williams G, Muller JE. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden death. N Engl J Med 1987;316 : 1514-8.
- Brezinski DA, Tofler GH, Muller JE, Pohjola-Sintonen S, Willich SN, Schafer AI, Czeisler CA, Williams GH. Morning increase in platelet aggregability. Association with assumption of the upright posture. Circulation 1988;78 : 35-40.
- 73. Ehrly AM, Jung G. Circadian rhythm of human blood viscosity. Biorheology 1973;10 : 577-83.
- 74. Rosing DR, Brakman P, Redwood DR, Goldstein RE, Beiser GD, Astrup T, *et al.* Blood fibrinolytic activity in man: diurnal variation and the response to varying intensities of exercise. Circ Res 1970; 27: 171-84.
- Andreotti F, Davies GJ, Hackett DR, Khan MI, DeBart ACW, Aber VR, Maseri A, Kluft C. Major circadian fluctuations in fibrinolytic factors and possible relevance to time of onset of myocardial infarction, sudden cardiac death and stroke. Am J Cardiol 1988;62 : 635-7.
- Panza JA, Epstein SE, Quyyumi AA. Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med 1991;325 : 986-90.
- 77. Quyyumi AA, Panza JA, Diodati JG, Lakatos E, Epstein SE. Circadian variation in ischaemic threshold. A mechanism underlying the circadian variation in ischaemic events. Circulation 1992; 86: 22-8.
- Nissen SE, Gurley JC, Grines CL, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991;84 : 1087-99.

- 79. Hodgson JM, Reddy KG, Suneja R, Nair RN, Lesnefsky EJ, Sheehan HM. Intracoronary ultrasound imaging. Correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993;21 : 35-44.
- Superko HR, Krauss RM. Coronary artery disease regression. Convincing evidence for the benefit of aggressive lipoprotein management. Circulation 1994;90 : 1056-69.
- Buchwald H, Matts JP, Fitch LI, Campos-CT, Sanmarco ME, Amplatz K, Castaneda Zuniga WR, Hunter DW, Pearce MB, Bissett JK, *et al.* Changes in sequential coronary angiograms and subsequent coronary events. Surgical control of hyperlipidemias (POSCH) Group. JAMA 1992;268 : 1429-33.
- Cahin-Hemphill L, Mach W, LaBree L, Hodis HN, Shircore A, Selzer RH, Blakenhorn DH. Coronary progression predicts future cardiac events. Circulaiton 1993;88 (Suppl I) : I-363.
- Yusuf S, Pepine CJ, Garces C, Pouleur H, Salem D, Kostis J, Benedict C, Rousseau M, Bourassa M, Pitt B. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 1992;340 : 1173-8.
- Pfeffer MA, Braunwald E, on behalf of SAVE Investigators. Efffect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 1992;327 : 669-77.
- Yusuf S, Peto J, Lewis J, et al. Beta blockade during and after myocardial infarction: An overview of the randomised trials. Prog Cardiovasc Dis 1985; 27: 335 - 371.
- Yusuf S, Sleight P, Held P, McMahon S. Routine medical management of acute myocardial infarction. Lessons form overviews of recent randomised controlled trials. Ciculation 1990;82: II-117 - II-134.
- Held PH, Yusuf S. Calcium antagonists in the treatment of ischemic heart disease: Myocardial infarction. Coron Artery Dis 1994;15 (Abstr, Suppl) : 134.
- The Danish Study Group on Verapamil in Myocardial Infarction. The effect of verapamil on mortality and major events after myocardial infarction. The Danish Verapamil Infarction Trial II (DAVIT II). Am J Cardiol 1990;66 : 779-85.
- Shah PK, Helfant RH. Smoking and coronary artery disease. Chest 1988;94 : 449-52
- 90. Rosenberg L, Kaufman DW, Helmrich SP, Shapiro S. The risk of myocardial infarction after quitting smoking in men under 55 years of age. N Engl J Med 1985;313 : 1511-4.

CONTINUING MEDICAL EDUCATION

QUIZ ON ACUTE CORONARY SYNDROME

- 1. Clinical entities of acute coronary syndrome include:
 - a. unstable angina
 - b. refractory angina
 - c. acute myocardial infarction
 - d. non-Q acute myocardial infarction
 - e. minor myocardial injury
- 2. The underlying mechanisms involved in acute coronary syndromes are:
 - a. progressive narrowing of the coronary lumen by atherosclerotic plaque
 - b. erosion of the fibrous cap
 - c. fissuring of the fibrous cap
 - d. platelet adhesion to the endothelium overlying the plaque
 - e. acute thrombus formation
- 3. Plaques predisposed to fissuring are those with:
 - a. a large lipid core
 - b. thin fibrous cap
 - c. massive infiltration by inflammatory cells
 - d. lipid content consisting mainly of crystalline cholesterol
 - e. small size
- 4. The following predispose to plaque rupture
 - a. surges of increased blood pressures
 - b. cold weather
 - c. emotional upheavals
 - d. vigorous exercise
 - e. regular exercise
- 5. The following statements are true:
 - a. vulnerable plaques can be identified
 - b. platelet aggregability is an important component in the pathogenesis of acute coronary syndromes
 - c. stabilisation of plaques is achievable
 - d. coronary angiography identifies vulnerable plaques
 - e. regression of plaques is possible